

 Navigation

 	
 index

 	
 next |

 	PMG Queue 3.0.0 documentation

PMG Queue

pmg/queue is a production ready queue framework that powers many internal
projects at PMG [https://www.pmg.com/].

It’s simple and extensible a number of features we’ve found to be the most
useful including automatic retries and multi-queue support.

Contents

	Messages
	Example Message

	Producers
	Routers

	Consumers
	Retrying Messages

	Logging

	Build Custom Consumers

	Message Handlers
	Callable Handler

	Multiple Handlers with Mapping Handler

	Using Tactician to Handle Messages

	Handling Messages in Separate Processes

	Drivers & Internals
	Drivers

	Envelopes

	Driver Implementations

	Serializers

	Implementing Your Own Drivers

Installation & Examples

You should require the driver library of your choice with
composer [https://getcomposer.org/] rather than pmg/queue directly. If
you’re planning to use beanstalkd as your backend:

composer require pmg/queue-pheanstalk:~1.0

See the core examples directory [https://github.com/AgencyPMG/Queue/tree/master/examples]
on the pheanstalk examples [https://github.com/AgencyPMG/queue-pheanstalk/tree/master/examples]
for some code samples on gluing everything together.

READ THIS: Glossary & Core Concepts

	A message is a serializable object that goes into the queue for later
processing.

	A producer adds messages to the queue backend via a driver and a
router.

	A consumer pulls messages out of the queue via driver and executes them
with handlers and executors.

	A driver is PHP representation of the queue backend. There are two built
in: memory and beanstalkd [http://kr.github.io/beanstalkd/]. Drivers
implement PMG\Queue\Driver.

	A driver is PHP representation of the queue backend. There is an in memory
driver included in this library as an example (and for testing), and an
implementation of a beanstalkd [http://kr.github.io/beanstalkd/] driver
available [https://github.com/AgencyPMG/queue-pheanstalk].

	A router looks up the correct queue name for a message based on its name.

	An executor runs the message handler. This is a simple abstraction to
allow folks to fork and run jobs if they desire.

	A handler is a callable that does the work defined by a message.

	handler resolvers find handlers based on the message name.

	An envelope is used internally to wrap up messages with retry information
as well as metadata specific to drivers. Users need not worry about this
unless they are implementing their own driver.

 Copyright 2016, Christopher Davis.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PMG Queue 3.0.0 documentation

Messages

Messages are objects that implement the PMG\Queue\Message interface. These
objects are meant to be serializable and contain everything
you need for a handler to do its job.

A message to send an alert to a user might look something like this:

Example Message

<?php
use PMG\Queue\Message;

final class SendAlert implements Message
{
 private $userId;

 public function __construct($userId)
 {
 $this->userId = $userId;
 }

 public function getUserId()
 {
 return $this->userId;
 }
}

Because messages are serialized to be put in a persistent backend they shouldn’t
include objects that require state. In the example above the message just
contains a user’s identifier rather than the full object. The handler
would then look up the user.

See Consumers and Producers for more information about handlers
and messages fit into the system as a whole.

 Copyright 2016, Christopher Davis.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PMG Queue 3.0.0 documentation

Producers

Producers add messages to a driver backed for the consumer to
pick up and handle.

	
interface Producer

	

	Namespace:	PMG\Queue

	
send(PMG\Queue\Message $message)

	Send a message to a driver backend.

	Parameters:	
	$message – The message to send into the queue

	Throws:	PMG\Queue\Exception\QueueNotFound if the message can’t be routed to an appropriate queue.

The default producer implementation takes a driver and a router as its
constructor arguments and uses the router (explained below) to send its messages
into a drivers specific queue.

<?php

use PMG\Queue\DefaultProducer;
use PMG\Queue\Router\SimpleRouter;

$router = new SimpleRouter('queueName');

/** @var PMG\Queue\Driver $driver */
$producer = new DefaultProdicer($driver, $router);

Routers

pmg/queue is built with multi-queue support in in mind. To accomplish that
on the producer side of things an implementation of PMG\Queue\Router is
used.

	
interface Router

	

	Namespace:	PMG\Queue

	
queueFor(PMG\Queue\Message $message)

	Looks a queue name for a given message.

	Parameters:	
	$message – the message to route

	Returns:	A string queue name if found, null otherwise.

	Return type:	string or null

Routing all Message to a Single Queue

Use PMG\Queue\SimpleRouter, which takes a queue name in the constructor
and always returns it.

<?php
use PMG\Queue\Router\SimpleRouter;

// all message will go in the "queueName" queue
$router = new SimpleRouter('queueName');

Routing Messages Based on Their Name

Use PMG\Queue\MappingRouter, which takes a map of message name => queue name
pairs to its constructor.

<?php

use PMG\Queue\Router\MappingRouter;

$router = new MappingRouter([
 // the `SendAlert` message will go into the `Alerts` queue
 'SendAlert' => 'Alerts',
]);

Falling Back to a Default Queue

To avoid QueueNotFound exceptions, it’s often a good idea to use
PMG\Queue\Router\FallbackRouter.

<?php

use PMG\Queue\DefaultProducer;
use PMG\Queue\SimpleMessage;
use PMG\Queue\Router\FallbackRouter;
use PMG\Queue\Router\MappingRouter;

$router = new FallbackRouter(new MappingRouter([
 'SendAlert' => 'Alerts',
]), 'defaultQueue');

$producer = new DefaultProducer($driver, $router);

// goes into the `Alerts` queue
$producer->send(new SimpleMessage('SendAlert'));

// goes into `defaultQueue`
$producer->send(new SimpleMessage('OtherThing'));

 Copyright 2016, Christopher Davis.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PMG Queue 3.0.0 documentation

Consumers

Implementations of PMG\Queue\Consumer pull message out of a driver backend
and handle (process) them in some way. The default consumer accomplishes this a
message handler.

In all cases $queueName in the consume should correspond to queues into
which your producer put messages.

	
interface Consumer

	

	Namespace:	PMG\Queue

	
run($queueName)

	Consume and handle messages from $queueName indefinitely.

	Parameters:	
	$queueName (string) – The queue from which the messages will be processed.

	Throws:	PMG\Queue\Exception\DriverError If some things goes wrong
with the underlying driver. Generally this happens if the persistent
backend goes down or is unreachable. Without the driver the consumer
can’t do its work.

	Returns:	An exit code

	Return type:	int

	
once($queueName)

	Consume and handle a single message from $queueName

	Parameters:	
	$queueName (string) – The queue from which the messages will be processed.

	Throws:	PMG\Queue\Exception\DriverError If some things goes wrong
with the underlying driver. Generally this happens if the persistent
backend goes down or is unreachable. Without the driver the consumer
can’t do its work.

	Returns:	True or false to indicate if the message was handled successfully.
null if no message was handled.

	Return type:	boolean or null

	
stop($code)

	Used on a running consumer this will tell it to gracefully stop on its
next iteration.

	Parameters:	
	$code (int) – The exit code to return from run

The script to run your consumer might look something like this. Check out the
handlers documentation for more information about what
$handler is below.

<?php

use PMG\Queue\DefaultConsumer;
use PMG\Queue\Driver\MemoryDriver;

$driver = new MemoryDriver();

/** @var PMG\Queue\MessageHandler $handler */
$consumer = new DefaultConsumer($driver, $handler);

exit($consumer->run(isset($argv[1]) ? $argv[1] : 'defaultQueue'));

Retrying Messages

When a message fails – by throwing an exception or returns false from a
MessageHandler – the consumer puts it back in the queue to retry up to 5
times by default. This behavior can be adjusted by providing a RetrySpec as
the third argument to DefaultConsumers constructor. pmg/queue provides a
few by default.

Retry specs look at PMG\Queue\Envelope instances, not raw messages. See the
internals documentation for more info about them.

	
interface RetrySpec

	

	Namespace:	PMG\Queue

	
canRetry(PMG\Queue\Envelope $env)

	Inspects an envelop to see if it can retry again.

	Parameters:	
	$env – The message envelope to check

	Returns:	true if the message can be retried, false otherwise.

	Return type:	boolean

Limited Retries

Use PMG\\Queue\\Retry\\LimitedSpec.

<?php

use PMG\Queue\DefaultConsumer;
use PMG\Queue\Retry\LimitedSpec;

// five retries by default. This is what the consumer does automatically
$retry = new LimitedSpec();

// Or limit to a specific number of retries
$retry = new LimitedSpec(2);

// $driver and $handler as above
$consumer = new DefaultConsumer($driver, $handler, $retry);

Never Retry a Message

Sometimes you don’t want to retry a message, for those cases use
PMG\\Queue\\Retry\\NeverSpec.

<?php

use PMG\Queue\DefaultConsumer;
use PMG\Queue\Retry\NeverSpec;

$retry = new NeverSpec();

// $driver and $handler as above
$consumer = new DefaultConsumer($driver, $handler, $retry);

Logging

When something goes wrong DefaultConsumer logs it with a
PSR-3 Logger [http://www.php-fig.org/psr/psr-3/] implementation. The default
is to use a NullLogger, but you can provide your own logger as the fourth
argument to DefaultConsumer‘s constructor.

<?php

use PMG\Queue\DefaultConsumer;

$monolog = new Monolog\Logger('yourApp');

// $driver, $handler, $retry as above
$consumer = new DefaultConsumer($driver, $handler, $retry, $monolog);

Build Custom Consumers

Extend PMG\\Queue\\AbstractConsumer to make things easy and only have to
implement the once method. Here’s an example that decorates another
Consumer with events.

<?php

use PMG\Queue\AbstractConsumer;
use PMG\Queue\Consumer;
use PMG\Queue\Message;
use Symfony\Component\EventDispatcher\Event;
use Symfony\Component\EventDispatcher\EventDispatcherInterface;

final class EventingConsumer extends AbstractConsumer
{
 /** @var Consumer */
 private $wrapped;

 /** @var EventDispatcherInterface $events */

 // constructor that takes a consumer and dispatcher to set the props ^

 public function once($queueName)
 {
 $this->events->dispatch('queue:before_once', new Event());
 $this->wrapped->once($queueName);
 $this->events->disaptch('queue:after_once', new Event());
 }
}

 Copyright 2016, Christopher Davis.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	PMG Queue 3.0.0 documentation

Message Handlers

A message handler is used by DefaultConsumer to do the actual work of
processing a message. Handlers implement PMG\Queue\MessageHandler which
accepts a message and a set of options from the the consumer as its arguments.

Every single message goes through a single handler. It’s up to that handler to
figure out how to deal with each message appropriately.

	
interface MessageHandler

	

	Namespace:	PMG\Queue

An object that can handle (process or act upon) a single message.

	
handle(PMG\Queue\Message $handle, array $options=[])

	

	Parameters:	
	$handle – The message to handle.

	$options – A set of options from the consumer.

	Returns:	A boolean indicated whether the message was handled successfully.

	Return type:	boolean

Callable Handler

The simplest handler could just be a callable that invokes the provided callback
with the message.

<?php

use PMG\Queue\DefaultConsumer;
use PMG\Queue\Message;
use PMG\Queue\Driver\MemoryDriver;
use PMG\Queue\Handler\CallableHandler;

$handler = new CallableHandler(function (Message $msg) {
 switch ($msg->getName()) {
 case 'SendAlert':
 sendAnAlertSomehow($msg);
 break;
 case 'OtherMessage':
 handleOtherMessageSomehow($msg);
 break;
 }
});

$consumer = new DefaultConsumer(new MemoryDriver(), $handler);

Multiple Handlers with Mapping Handler

The above switch statement is a lot of boilerplaint, so PMG provies a
mapping handler [https://github.com/AgencyPMG/queue-mapping-handler]
that looks up callables for a message based on its name. For example,
here’s a callable for the send alert message.

<?php

final class SendAlertHandler
{
 private $users;
 private $mailer;

 public function __construct(UserRepository $users, \Swift_Mailer $mailer)
 {
 $this->users = $users;
 $this->mailer = $mailer;
 }

 public function __invoke(SendAlert $message)
 {
 $user = $this->users->getByIdentifierOrError($message->getUserId());

 $this->mailer->send(
 \Swift_Message::newInstance()
 ->setTo([$user->getEmail()])
 ->setFrom(['help@example.com'])
 ->setSubject('Hello')
 ->setBody('World')
);
 }
}

Now pull in the mapping handler with composer require pmg/queue-mapping-handler
and we can integrate the callable above with it.

<?php

use PMG\Queue\DefaultConsumer;
use PMG\Queue\Handler\MappingHandler;

$handler = MappingHandler::fromArray([
 'SendAlert' => new SendAlertHandler(/*...*/),
 //'OtherMessage' => new OtherMessageHandler()
 // etc
]);

/** @var PMG\Queue\Driver $driver */
$consumer = new DefaultConsumer($driver, $handler);

Using Tactician to Handle Messages

Tactician [https://tactician.thephpleague.com/] is a command bus from The PHP
League. You can use it to do message handling with the queue.

composer install pmg/queue-tactician

Use the same command bus with each message.

<?php

use League\Tactician\CommandBus;
use PMG\Queue\DefaultConsumer;
use PMG\Queue\Handler\TaticianHandler;

$handler = new TacticianHandler(new CommandBus(/* ... */));

/** @var PMG\Queue\Driver $driver */
$consumer = new DefaultConsumer($driver, $handler);

Alternative, you can create a new command bus to handle each message with
CreatingTacticianHandler. This is useful if you’re using
forking child processes to handle messages.

<?php

use League\Tactician\CommandBus;
use PMG\Queue\DefaultConsumer;
use PMG\Queue\Handler\CreatingTaticianHandler;

$handler = new TacticianHandler(function () {
 return new CommandBus(/* ... */);
});

/** @var PMG\Queue\Driver $driver */
$consumer = new DefaultConsumer($driver, $handler);

Handling Messages in Separate Processes

To handle messages in a forked process use the PcntlForkingHandler
decorator.

<?php

use PMG\Queue\Handler\MappingHandler;
use PMG\Queue\Handler\PcntlForkingHandler;

// create an actual handler
$realHandler = MappingHandler::fromArray([
 // ...
]);

// decorate it with the forking handler
$handler = new PcntlForkingHandler($realHandler);

Forking is useful for memory management, but requires some consideration. For
instance, database connections might need to be re-opened in the forked process.
In such cases, the best bet is to simply create the resources on demand. that’s
why the TaticianHandler above takes a factory callable by default.

In cases where a process fails to fork, a PMG\Queue\Exception\CouldNotFork
exception will be thrown and the consumer will exit with an unsuccessful status
code. Your process manager (supervisord, upstart, systemd, etc) should be
configured to restart the consumer when that happens.

 Copyright 2016, Christopher Davis.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	PMG Queue 3.0.0 documentation

Drivers & Internals

Behind the scenes consumers and producers
use driver and envelopes to do their work.

Drivers

Drivers are the queue backend hidden behind the PMG\Queue\Driver interface.
pmg/queue comes with two drivers built in: memory and pheanstalk
(beanstalkd).

Drivers have method for enqueuing and dequeueing messages as well as methods for
acknowledging a message is complete, retrying a message, or marking a message
as failed.

Envelopes

Envelopes wrap up messages to allow drivers to add additional
metadata. One example of such metadata is a retry count that
the consumers may use to determine if a message should be
retried. The pheanstalk driver implements its own envelop
class so it can track the beanstalkd job identifier for the message.

Drivers are free to do whatever they need to do as long as their envelope
implements PMG\Queue\Envelope.

Driver Implementations

The core pmg/queue library provides a in memory driver and PMG maintains a
driver for beanstalkd [https://github.com/AgencyPMG/queue-pheanstalk/tree/master/examples]
that uses the pheanstalk [https://github.com/pda/pheanstalk] library.

The Memory Driver & Testing

The memory driver is provided to make prototyping and testing easy. It uses
SplQueue [http://php.net/manual/en/class.splqueue.php] instances and only
keeps messages in memory.

<?php
use PMG\Queue\DefaultConsumer;
use PMG\Queue\Driver\MemoryDriver;

// ...

$driver = new MemoryDriver();

// $handler instanceof PMG\Queue\MessageHandler
$consumer = new DefaultConsumer($driver, $handler);

The memory driver isn’t extrodinary useful outside of testing. For instance,
while doing end to end tests, you may want to switch out your producers library
to use the memory driver then verify the expected messages when into it.

<?php
use PMG\Queue\Driver\MemoryDriver;

class SomeTest extends \PHPUnit_Framework_TestCase
{
 const TESTQ = 'TestQueue';

 /** @var MemoryDriver $driver */
 private $driver;

 public function testSomething()
 {
 // imagine some stuff happened before this, now we need to verify that

 $envelope = $this->driver->dequeue(self::TESTQ);

 $this->assertNotNull($envelope);
 $msg = $envelope->unwrap();
 $this->assertInstanceOf(SendAlert::class, $msg);
 $this->assertEquals(123, $msg->getUserId());
 }

}

Pheanstalk Driver

The pheanstalk driver is backed by beanstalkd [http://kr.github.io/beanstalkd/]
and is a persistent driver: messages persist across multiple requests or queue
runs.

To use it, use composer to install pmg/queue-pheanstalk and pass an instance
of Pheanstalk\Pheanstalk and a serializer to its constructor.

<?php
use Pheanstalk\Pheanstalk;
use PMG\Queue\Driver\PheanstalkDriver;
use PMG\Queue\Driver\Serializer\NativeSerializer;

$driver = new PheanstalkDriver(
 new Pheanstalk('localhost', 11300),
 new NativeSerializer('this is a key used to sign messages')
);

See the pheanstalk driver repository [https://github.com/AgencyPMG/queue-pheanstalk#quick-example]
for more information and examples.

Serializers

Persistent drivers require some translation from envelopes
and messages to something the persistent backend can store.
Similarly, whatever is stored in the queue backend needs to be turned back into
a message. Serializers make that happen.

All serializers implements PMG\Queue\Serializer\Serializer and one
implementation is provied by default: NativeSerializer.

NativeSerializer uses PHP’s build in serialize and unserialize
functions. Serialized envelopes are base64 encoded and signed (via an HMAC) with
a key given to NativeSerializer in its constructor. The signature is a way
to authenticate the message (make sure it came from a source known to use).

<?php
use PMG\Queue\Serializer\NativeSerializer;

$serializer = new NativeSerializer('this is the key');

// ...

Allowed Classes in PHP 7

NativeSerializer supports PHP 7’s allowed_classes option in
unserialize to whitelist classes. Just pass an array of message class names
as the second argument to NativeSerializer‘s constructor.

Because drivers have their own envelope classes, the pheanstalk driver
(or any other drivers that extend PMG\Queue\Driver\AbstractPersistanceDriver)
provides a static allowedClasses method that returns an array of envelope
classes to whitelist.

<?php
use PMG\Queue\Serializer\NativeSerializer;
use PMG\Queue\Driver\PheanstalkDriver;

$serializer = new NativeSerializer('YourSecretKeyHere', array_merge([
 // your message classes
 SendAlert::class,
 // ...
], PheanstalkDriver::allowedClasses()));

Implementing Your Own Drivers

Persistent drivers are not required to use serializers (or anything else), but
if they do PMG\Queue\Driver\AbstractPersistanceDriver provides helpers for
the usage of serializers.

 Copyright 2016, Christopher Davis.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	PMG Queue 3.0.0 documentation

Index

 Copyright 2016, Christopher Davis.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/minus.png

_static/comment.png

search.html

 Navigation

 		
 index

 		PMG Queue 3.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Christopher Davis.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

